
NDetermin: Inferring Nondeterministic Sequential

Specifications for Parallelism Correctness

Jacob Burnim
Tayfun Elmas
George Necula
Koushik Sen

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-143

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-143.html

December 16, 2011

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
16 DEC 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
NDetermin: Inferring Nondeterministic Sequential Specifications for
Parallelism Correctness

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Electrical Engineering and
Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A key reason for the great difficulty of writing, testing, and verifying parallel programs is the need to
reason simultaneously about not only the sequential correctness of each part of a program in isolation but
also about all possible nondeterministic interleavings of the program?s parallel threads. Thus, there has
been much interest in techniques for separately testing or verifying the correctness of a program?s use of
parallelism, allowing the program?s functional correctness to be tested or verified in a sequential way.
Nondeterministic Sequential (NDSeq) specifications have been proposed as a means for achieving this
decomposition in testing debugging, and verifying a program?s parallelism correctness and its sequential
functional correctness. An NDSeq specification for a parallel program is a sequential version of the
program, with no parallel threads but with some limited, controlled nondeterminism. A program?s use of
parallelism is correct if, for every execution of the parallel program, there exists an execution of the NDSeq
specification producing the same result. Functional correctness can then be checked on this NDSeq
specification, without any interleaving of parallel threads. While NDSeq specifications have been used
successfully to check parallelism correctness, manually writing NDSeq specifications for programs can be a
challenging and time-consuming process. Thus, in this work, we propose a technique for automatically
inferring a likely NDSeq specification for a parallel program. Given a few representative executions of a
parallel program, our technique combines dynamic data flow analysis and Minimum-Cost Boolean
Satisfiability (MinCostSAT) solving to infer a likely NDSeq specification for the program?s parallelism.
We have implemented our technique for Java in a prototype tool called NDETERMIN. For a number of
benchmarks, our tool infers equivalent or stronger NDSeq specifications than those previously written
manually.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

14

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This research supported in part by Microsoft (Award \#024263) and Intel
(Award
\#024894) funding and by matching funding by U.C. Discovery (Award
\#DIG07-10227), by NSF Grants CNS-0720906, CCF-101781, CCF-
0747390,
CCF-1018729, and CCF-1018730, and by a DoD NDSEG Graduate
Fellowship.
The last author is supported in part by a Sloan Foundation Fellowship.
Additional support comes from Oracle (formerly Sun Microsystems), from
a gift from Intel, and from Par Lab affiliates National Instruments,
NEC, Nokia, NVIDIA, and Samsung.

NDetermin: Inferring Nondeterministic Sequential
Specifications for Parallelism Correctness

Jacob Burnim Tayfun Elmas George Necula Koushik Sen
EECS Department, University of California, Berkeley, CA, USA
{jburnim,elmas,necula,ksen}@cs.berkeley.edu

Abstract
A key reason for the great difficulty of writing, testing, and veri-
fying parallel programs is the need to reason simultaneously about
not only the sequential correctness of each part of a program in iso-
lation, but also about all possible nondeterministic interleavings of
the program’s parallel threads. Thus, there has been much interest
in techniques for separately testing or verifying the correctness of
a program’s use of parallelism, allowing the program’s functional
correctness to be tested or verified in a sequential way.

Nondeterministic Sequential (NDSeq) specifications have been
proposed as a means for achieving this decomposition in testing,
debugging, and verifying a program’s parallelism correctness and
its sequential functional correctness. An NDSeq specification for
a parallel program is a sequential version of the program, with no
parallel threads but with some limited, controlled nondeterminism.
A program’s use of parallelism is correct if, for every execution of
the parallel program, there exists an execution of the NDSeq speci-
fication producing the same result. Functional correctness can then
be checked on this NDSeq specification, without any interleaving
of parallel threads.

While NDSeq specifications have been used successfully to
check parallelism correctness, manually writing NDSeq specifica-
tions for programs can be a challenging and time-consuming pro-
cess. Thus, in this work, we propose a technique for automatically
inferring a likely NDSeq specification for a parallel program. Given
a few representative executions of a parallel program, our technique
combines dynamic data flow analysis and Minimum-Cost Boolean
Satisfiability (MinCostSAT) solving to infer a likely NDSeq spec-
ification for the program’s parallelism. We have implemented our
technique for Java in a prototype tool called NDETERMIN. For a
number of benchmarks, our tool infers equivalent or stronger ND-
Seq specifications than those previously written manually.

1. Introduction
As multicore and manycore processors become increasingly com-
mon, more and more programmers must write parallel software.
But writing such parallel software can be difficult and error prone.
In addition to reasoning about the sequential correctness of each
component of a program in isolation, a programmer must simul-
taneously consider whether multiple components running in paral-
lel, their threads interleaving nondeterministically, can harmfully
interfere with one another. The need to deal simultaneously with
the correctness of a program’s parallelism and its often-sequential
functional correctness greatly complicates writing, testing, debug-
ging, and verifying parallel programs.

We have previously proposed nondeterministic sequential (ND-
Seq) specifications [4] as a way to separately address the correct-
ness of a program’s parallelism and a program’s sequential func-
tional correctness. The key idea is to use a sequential version of a

structured-parallel program as a specification for the program’s par-
allel behavior. That is, the program’s use of parallelism is correct
if, for every parallel execution of the program, their exists an exe-
cution of the sequential version that produces the same result. But,
to capture all intended behaviors of a parallel program, the sequen-
tial version may have to include some limited, controlled nondeter-
minism. Thus, a programmer specifies the intended or algorithmic
nondeterminism in their parallel application, and the nondetermin-
istic sequential (NDSeq) specification is a sequential version of the
program, with no interleaving of parallel threads but with this anno-
tated nondeterminism. Any additional nondeterminism is an error,
due to unintended interference between interleaved parallel threads,
such as data races or atomicity violations. Further, the functional
correctness of a parallel program can then be tested, debugged, and
verified sequentially on the NDSeq specification, without any need
to reason about the uncontrolled interleaving of parallel threads.

In [4], we also proposed a sound runtime technique for checking
that a structured-parallel program conforms to its NDSeq specifi-
cation. This technique was able to check the parallelism correct-
ness of a number of complex Java benchmark programs. How-
ever, writing NDSeq specifications for parallel programs can be a
time-consuming and challenging process, especially to a program-
mer unfamiliar with such specifications. A programmer can easily
forget to include some correct nondeterministic behaviors, forcing
them to iterate between checking their program against its NDSeq
specification and inspecting violating executions in order to add
such missing nondeterminism to the specification.

In this work, we propose a technique for automatically infer-
ring a likely NDSeq for a structured-parallel program. Given a
representative set of correct parallel executions, plus some sim-
ple annotations about which program locations contain the final
program result, our algorithm infers a NDSeq specification with
a minimal amount of added nondeterminism necessary to cap-
ture all behavior seen in the observed parallel executions. Our in-
ference algorithm combines dynamic data-flow analysis, conflict-
serializability checking, and Minimum-Cost Boolean Satisfiability
(MinCostSAT) solving.

We have implemented our NDSeq specification inference al-
gorithm in a prototype tool for Java, called NDETERMIN. We ap-
plied NDETERMIN to the set of Java benchmarks for which we pre-
viously hand-wrote NDSeq specifications for the work presented
in [4], and NDETERMIN correctly inferred all these hand-written
specifications. This provides promising preliminary evidence that
NDETERMIN can infer correct and useful NDSeq specifications for
parallel applications.

We believe that automatically inferring NDSeq specifications
can save programmer time and effort in applying NDSeq specifica-
tions. In particular, we believe that using an inferred specification as
a starting point is much simpler than writing the whole specification
from scratch. Further, our inference algorithm can detect parallel

1: coforeach (i in 1,...,N) {

2: bool done = false;

3: while (!done) {

4:

5: int prev = x;

6: int curr = i * prev + i;

7: bool c = CAS(x, prev, curr);

8: if (c) {

9: done = true;

10: }

11: } }

Figure 1. Simple parallel program to perform the reduction in
line 6 for the integers {1,. . . ,N}, in some arbitrary order.

1: nd-foreach (i in 1,...,N) {

2: bool done = false;

3: while (!done) {

4: if (*) {

5: int prev = x;

6: int curr = i * prev + i;

7: bool c = CAS(x, prev, curr);

8: if (c) {

9: done = true;

10: }

11: } } }

Figure 2. A nondeterministic sequential specification for the
program in Figure 1.

behaviors that no possible NDSeq specification would allow, which
often contain parallelism bugs. More generally, such inferred spec-
ifications can aid in understanding and documenting a program’s
parallel behavior. Finally, inferring NDSeq specifications is a step
towards an automated approach to testing and verification of paral-
lel programs by decomposing parallelism and sequential functional
correctness. In such an approach, a program’s parallelism would be
checked against its inferred NDSeq specification, while functional
correctness would be checked sequentially on the NDSeq specifica-
tion using any of a wide variety of powerful techniques for testing
and verifying sequential, nondeterministic programs.

2. Overview
In this section, we give an overview of our algorithm for inferring
NDSeq specifications for parallel programs on a simple example.
We first present some background on NDSeq specifications.

2.1 Motivating Example
Consider the simple parallel program in Figure 1. The program con-
sists of a parallel for-loop, written as coforeach—each iteration of
this loop attempts to perform a computation (Line 6) on shared vari-
able x, which is initially 0. Each iteration uses an atomic compare-
and-swap (CAS) operation to update shared variable x. If multiple
iterations try to concurrently update x, some of these CAS’s will fail
and those parallel loop iterations will recompute their updates to x
and try again.

Consider the parallel execution shown in Figure 3. In this exe-
cution, the i=1 iteration reads and computes an updated value for
shared variable x. But before the i=1 iteration can update x, the i=2
iteration (in another thread) runs and sets x to 2. The first compare-
and-swap (CAS) operation in the i=1 iteration then fails, and the
iteration redoes its computation before successfully updating x.

2.2 Background: Nondeterministic Sequential Specifications
The problem addressed by nondeterministic sequential (NDSeq)
specifications is how to reason about the correctness of the parallel
program in the presence of thread interleavings. If we can specify
the full functional correctness of a program—i.e., for our motivat-
ing example, specify precisely which final values of x are correct
for each input value of x—then this specification will clearly im-
ply that the parallelization of the program was correct. Although it
may look straightforward to write such a formal specification for
our motivating example, we believe that it will be a very difficult
task for many large and complex programs.

Instead of testing or verifying a parallel program directly against
a functional specification, we would like to separate this end-to-
end reasoning into two simpler tasks: (1) the checking of whether
the program is parallelized correctly independent of the complex
functional correctness and (2) the checking of whether the program

satisfies a functional correctness criteria independent of any inter-
leaving of threads.

A natural approach to specifying parallelism correctness would
be to specify that the program in Figure 1 must produce the same
final value for x as a version of the program with all parallelism
removed—i.e., the entire code is executed by a single thread. (Note
that, this condition is independent of which final values of x are
correct, which is specified and checked separately as the functional
correctness of the program.) However, in this case we do not get a
sequential program equivalent to the parallel program. For exam-
ple, the parallel program in Figure 1 is free to execute the compu-
tations at line 6 in any nondeterministic order. Thus, for the same
input value of x, different thread schedules can produce different
values for x at the end of the execution. On the other hand, exe-
cuting the loop sequentially from 1 to N will always produce the
same, deterministic final value for x. Suppose that such extra non-
deterministic behaviors due to thread interleavings are intended; the
challenge here is how to express these nondeterministic behaviors
in a sequential specification.

We addressed this challenge in [4] by introducing a specifica-
tion mechanism that the programmer can use to declare the in-
tended, algorithmic notions of nondeterminism in the form of a se-
quential program. Such a nondeterministic sequential specification
(NDSeq) for our example program is shown in Figure 2. This spec-
ification is intentionally very close to the actual parallel program,
but its semantics is sequential with two nondeterministic aspects.
First, the nd-foreach keyword in line 1 specifies that the loop iter-
ations can run in any permutation of the set 1, . . . , N. This part of
the specification captures the intended nondeterministic behavior
of the program, caused in the parallel program by running threads
with arbitrary schedules. Second, the if(*) keyword in line 4 spec-
ifies that the iteration body may be skipped nondeterministically,
at least from a partial correctness point of view; this is acceptable,
since the loop in this program fragment is already prepared to deal
with the case when the effects of an iteration are ignored follow-
ing a failed CAS statement. In summary, all the final values of x
output by the parallel program in Figure 1 can be produced by a
feasible execution of the NDSeq specification in Figure 2. Then,
we say that the parallel program obeys its NDSeq specification.
In fact, we have developed a sound algorithm [4] that checks for
a given representative interleaved execution trace ⌧ of the parallel
program, whether there exists an equivalent, feasible execution of
the NDSeq specification.

2.3 Inferring NDSeq Specifications
The key difficultly with the previous approach is that writing such
specifications, and especially the placement of the if(*) con-
structs, can be difficult in many practical situations. If we place
too few if(*) constructs, we may not be able to specify some in-
tended nondeterministic behaviors in the parallel code. However,

 e1: done = false!
 e2: while (done) {!
 e3: prev = x (0)!
 e4: curr = i*prev + i (1)!
!
!
!
!
!
!
!
!
!
!
 e13: c = CAS(x,prev,curr) (false)!
 e14: if (c) {!
 }!
 }!
 e15: while (done) {!
 e16: prev = x (2)!
 e17: curr = i*prev + i (3)!
 e18: c = CAS(x,prev,curr) (true)!
 e19: if (c) {!
 e20: done = true!
 }!
 }!
 e21: while (done) { }!

 e5: done = false!
 e6: while (done) {!
 e7: prev = x (0)!
 e8: curr = i*prev + i (2)!
 e9: c = CAS(x,prev,curr) (true)!
 e10: if (c) {!
 e11: done = true!
 }!
 } !
e12: while (done) { }!

i=1!

i=2!

 e1: done = false!
 e2: while (done) {!
 e3: prev = x (0)!
 e4: curr = i*prev + i (1)!
 e13: c = CAS(x,prev,curr) (false)!
 e14: if (c) {!
 } !
 }!
 e15: while (done) {!
 e16: prev = x (2)!
 e17: curr = i*prev + i (3)!
 e18: c = CAS(x,prev,curr) (true)!
 e19: if (c) {!
 e20: done = true!
 }!
 }!
 e21: while (done) { }!

 e5: done = false!
 e6: while (done) {!
 e7: prev = x (0)!
 e8: curr = i*prev + i (2)!
 e9: c = CAS(x,prev,curr) (true)!
 e10: if (c) {!
 e11: done = true!
 }!
 } !
e12: while (done) { }!

i=1!

i=2!

Figure 3. A parallel execution of two iterations (i=1,2) of the
example parallel program from Figure 1. The vertical order of
events shows the interleaving. Each assignment shows in paren-
theses the value being assigned. The thin dotted arrows denote
data dependencies between events. The thick solid arrows de-
note transactional conflicts.

 e1: done = false!
 e2: while (done) {!
 e3: prev = x (0)!
 e4: curr = i*prev + i (1)!
!
!
!
!
!
!
!
!
!
!
 e13: c = CAS(x,prev,curr) (false)!
 e14: if (c) {!
 }!
 }!
 e15: while (done) {!
 e16: prev = x (2)!
 e17: curr = i*prev + i (3)!
 e18: c = CAS(x,prev,curr) (true)!
 e19: if (c) {!
 e20: done = true!
 }!
 }!
 e21: while (done) { }!

 e5: done = false!
 e6: while (done) {!
 e7: prev = x (0)!
 e8: curr = i*prev + i (2)!
 e9: c = CAS(x,prev,curr) (true)!
 e10: if (c) {!
 e11: done = true!
 }!
 } !
e12: while (done) { }!

i=1!

i=2!

 e1: done = false!
 e2: while (done) {!
 e3: prev = x (0)!
 e4: curr = i*prev + i (1)!
 e13: c = CAS(x,prev,curr) (false)!
 e14: if (c) {!
 } !
 }!
 e15: while (done) {!
 e16: prev = x (2)!
 e17: curr = i*prev + i (3)!
 e18: c = CAS(x,prev,curr) (true)!
 e19: if (c) {!
 e20: done = true!
 }!
 }!
 e21: while (done) { }!

 e5: done = false!
 e6: while (done) {!
 e7: prev = x (0)!
 e8: curr = i*prev + i (2)!
 e9: c = CAS(x,prev,curr) (true)!
 e10: if (c) {!
 e11: done = true!
 }!
 } !
e12: while (done) { }!

i=1!

i=2!

Figure 4. A serialization of the parallel execution in Figure 3.
This serialization becomes a witness that there exists an equiva-
lent execution of the NDSeq specification in Figure 2. The ver-
tical order of events shows the interleaving. Each assignment
shows in parentheses the value being assigned. The thick solid
arrows denote transactional conflicts.

if we place too many if(*) constructs, or if we place them in the
wrong places, the specification might allow too much nondetermin-
ism, which will likely violate the intended functionality of the code.

Our contribution in this paper is to give an algorithm, running
on a set of input execution traces, for inferring a minimal nondeter-
ministic sequential specification such that the checking approach
described in [4] on the input traces succeeds. Choosing a minimal
specification—i.e., with a minimal number of if(*), is a heuristic
that makes it more likely that the inferred specification matches the
intended behavior of the program. Our key idea is to reformulate
our runtime checking algorithm in [4] (explained below) as a con-
straint solving and optimization problem, in particular a Minimum
Cost Boolean Satisfiability (MinCostSAT) problem.

Runtime Checking Parallelism Correctness Consider the paral-
lel execution shown in Figure 3. Our algorithm in [4] checks if this
trace can be serialized with respect to the NDSeq specification—i.e.
whether the final result (the value of the shared variable x) can be
obtained by running the loop iterations sequentially in some non-
deterministic order. For our example trace, the algorithm discovers
the serialization in Figure 4. This serialization is a witness to the
correctness of the parallelism in the trace in Figure 3.

The algorithm in [4] determines whether or not such an NDSeq
execution exists by generalizing conflict-serializability [27] check-
ing. We now describe conflict-serializability on our motivating ex-
ample to show why and how conflict-serializability must be gen-
eralized for checking NDSeq specifications. Given a collection of
transactions—in this case, we think of each parallel loop iteration
as a transaction—we form the conflict graph whose vertices are the

transactions and with a conflict edge from transaction tr to tr

0 if tr

and tr

0 contain conflicting operations op and op0 with op happening
before op0. Two operations from different threads are conflicting if
they operate on the same shared global and at least one of them is
a write; in Figure 3 and 4 the conflicts are shown with thick solid
arrows. It is a well-known result [27] that if there are no cycles in
the conflict graph, then the transactions are serializable.

Because the conflict arrows from the i=1 iteration to the i=2
iteration (from e3 to e9) and vice versa (e.g., from e9 to e13, e16, or
e18) form a cycle, these two iterations are not conflict-serializable.
Yet, this execution trace is serializable, since its result is the same
as if we run first the iteration i=2 followed by i=1. Therefore, we
need a more general notion than conflict-serializability.

In order to report this execution serializable, we must be able to
show that all conflict cycles between iteration i=1 and i=2 can be
safely ignored. For this, we perform a dynamic data flow analysis
and use the if(*) in the program’s NDSeq specification in this
analysis. In particular, we need to identify relevant events in the
traces: (1) final writes to the shared variable x, and (2) all events on
which events in (1) are (transitively) dependent. Then, we check if
there is any conflict cycle formed by only relevant events; we can
safely ignore the cycles that contain irrelevant events.

Computing Relevant Events When computing the set of relevant
events, we consider all data dependencies between events (shown
with thin dotted arrows in Figure 3). For the trace in Figure 3, we
first include events e9 and e18 in the relevant events, as both write
to shared variable x. We then include e7, e8, e16, and e17, as e9 and
e18 are data dependent on these events.

The way we consider control dependencies is subtle. By default,
a deterministic branch event is considered relevant and all events
that flow into its branch condition become relevant. For example,
in Figure 3, the events e2, e6, e10, e12, e19, and e21 are considered
relevant, and we include events e1 and e5, as e2 and e6 are data
dependent on the writes of local variable done. Exceptionally, a
branch event can be considered irrelevant if that event is executed
by a statement s enclosed within if(*) in the program’s NDSeq
specification and all the events generated by that execution of
s are irrelevant. Intuitively, this means that in the corresponding
execution of the NDSeq specification, that particular execution of
s can be entirely ignored without affecting the final outcome of
the execution (by considering that the nondeterministic if(*) will
be resolved to if(false) in the corresponding NDSeq execution).
Therefore, when inferring the NDSeq specification, we need to look
for statements to add if(*) so that we can ignore events that are
involved in conflict cycles. In the presence of the data dependencies
between events, this becomes a combinatorial search problem.

In order to show that the execution Figure 3 is serializable, we
need to ignore the conflict cycles formed by the thick solid arrows
in the figure. For this, possible candidate events to ignore are: (1)
the read e3, (2) the write e9, or (3) all three of e13, e16, and e18. But,
since the events e9, e16, and e18 affect the computation of x, they
are relevant for the final result of the trace and they could not be
eliminated in a matching serialization even if they were guarded by
if(*). Thus, our inference algorithm must focus on placing if(*)
around events e3 and e13.

If we enclose an if(*) around lines 5-10 as shown in Figure 2,
we can safely mark event e14 irrelevant, because the branch e14 cor-
responds to is not evaluated, and thus, does not affect the rest of the
execution. This also makes the events e3, e4, and e13 irrelevant be-
cause these events flow into only each other and e14. Therefore, we
can ignore the events e3, e4, e13, and e14 together with the conflict
cycles they are involved in. In fact, the only conflict cycles in the
execution are formed by the events e3 and e13, and after ignoring
these cycles, we can declare the execution in Figure 3 serializable.
Serializing this execution respecting the remaining conflict edges
gives us the execution trace in Figure 4. This trace can also be gen-
erated by a nondeterministic execution of the NDSeq specification
given in Figure 2 by choosing false for if(*) in the first iteration
of i=1.

MinCostSAT Solving for if(*) Placements Having explained
how a given parallel execution trace is checked against an existing
NDSeq specification, we next explain how to infer such a speci-
fication. For this, we observe a set of representative parallel exe-
cution traces for which the standard conflict serializability check
gives conflict cycles. Since we are inferring an NDSeq specifica-
tion for the program, not for a single trace, using multiple traces
allows us to observe variations in the executions and improves the
reliability of the inferred NDSeq specification.

We then construct and solve a MinCostSAT formula that takes
as input the events in the input traces and the conflict cycles de-
tected by the standard conflict serializability check. While generat-
ing the formula, we encode the reasoning about relevant events and
conflict cycles described above as constraints in the formula. In
particular, the constraints enforce the data dependencies between
the events and conditions to ignore all observed conflict cycles in
the input traces. The MinCostSAT formulation contains variables
corresponding to possible placement of if(*)s in the program. If
this formula is satisfiable, then the solution gives us a minimal set
of statements S* in the program, such that the input traces are all
serializable with respect to the NDSeq specification obtained by
enclosing all statements in S* with if(*).

Constraints are added to impose a number of conditions:

1. For each cycle of transactional conflicts, at least one of the
events involved in the cycle must be made irrelevant. For ex-
ample, we would add constraint (Xe3 _ Xe9 _ Xe13) for the
cycle between the i=1 and i=2 iterations by conflicts e3 7! e9

and e9 7! e13. This constraint enforces that at least one of the
variables Xe3 , Xe9 , and Xe13 be 1 in the solution.

2. Each event e can be made irrelevant only if all events that are
data or control dependent on e are also irrelevant. For example,
e3 can be made irrelevant only if e4, e13, and e14 are made
irrelevant, as well. For example, (Xe3 =) Xe4) is among
the constraints added to model this requirement. The constraint
enforces that whenever Xe3 is 1 in the solution, Xe4 be also 1
in the same solution.

3. For each event e, we add a constraint indicating that e is made
irrelevant only if some if(*) is added such that both: (a) some
dynamic instance of the if(*) contains e, and (b) no event
contained by that dynamic instance is relevant.
For example, an if(*) around line 5, lines 5–7, or lines 5–10
would make e3 irrelevant, because none of events e4, e13, or
e14 (which depend on e3) are relevant. But an if(*) around the
entire while statement would not, because the dynamic if(*)
containing e3 would also contain the relevant event e18.

4. Finally, we forbid adding overlapping if(*) constructs. For
example, we forbid adding both an if(*) around lines 5 and
6 and one around lines 6 and 7, as this would not be a well-
structured program.

These constraints allow any solution that covers all of lines 5–
10, and no more, with some number of if(*) constructs. (Because
events e3, e4, e13, and e14 all must be made irrelevant, and any
larger if(*) including these events would include relevant events).
The minimal such solution places a single if(*) that encloses
lines 5-10. Thus, our algorithm produces the correct NDSeq speci-
fication for this example.

3. Background: NDSeq Specifications
In this section, we formalize the condition for a parallel program
to satisfy its NDSeq specification, and formally describe our ap-
proach in [4] to checking this condition. For this, we will assume
that we are given an NDSeq specification a priori. We show in the
next section how to infer such a specification with minimal nonde-
terminism.

3.1 NDSeq Specifications and Parallelism Correctness
Given a parallel program P , we specify the correct behavior of a
parallel program by writing an equivalent nondeterministic sequen-
tial (NDSeq) program as a specification of P , instead of explicitly
giving a specification of the required input-output behavior. Infor-
mally, the equivalence means that for any input and thread schedule
of P there exists an execution of the NDSeq program that produces
the same output. We formalize these concepts next after describing
the language constructs that we use to write parallel programs and
their specifications.

We will follow the approach in [4] where the specification is
embedded in the parallel program itself. This embedding enables
one to readily apply standard conflict serializability checking tech-
niques to verify the program against its NDSeq specification. The
syntax for the language is shown in Figure 5. To simplify the pre-
sentation we consider a NDSeq program P to consist of a sin-
gle procedure. We omit the discussion of multiple procedures and
object-oriented concepts, and assume that each global variable (in
Global) refers to a distinct location on the shared heap, and each lo-
cal variable (in Local) refers to a distinct stack location of a thread.

g 2 Global l 2 Local x 2 Var = Global [Local

s 2 Stmt ::= l = l op l | l = constant | l = l | g = l | l = g | s; s
| if(l) s else s | while(l) s | foreach (l in l) s

| coforeach (l in l) s | cobegin s; ...; s

| atomic s | if(*) s

Figure 5. Selected statements of our language. The constructs
with a different semantics in the parallel program and the NDSeq
specification are shown in gray color.

Given a parallel program P , the NDSeq specification is ob-
tained by (a) overloading the parallel constructs that create threads
(coforeach and cobegin) in a sequential context, and (b) introduc-
ing nondeterministic control flow with if(*). Specifically, given an
statement s in the parallel program, the user can modify the state-
ment to if(*){s} in the NDSeq specification. For each program P ,
given a set of statements to enclose with if(*), we define two sets
of executions ParExecs(P) and NdSeqExecs(P), described below.
The correctness of the parallel program is then given by relating
ParExecs(P) and NdSeqExecs(P).

Parallel executions: ParExecs(P) contains the parallel execu-
tions of P where each cobegin and coforeach statement creates
implicitly new threads to execute its body. cobegin s1; ...; sn is
evaluated by executing each of s1, ..., sn on a separate, newly cre-
ated thread. coforeach is evaluated by executing each iteration
of the loop on a separate, newly created thread. Following struc-
tured fork/join parallelism, a parallel execution of a cobegin and
coforeach statement terminates only after all the threads created on
behalf of the statement terminate. Assignments, branch conditions,
and the entire atomic statement are executed as atomic steps with-
out being interrupted by other threads. Note that, if(*){s} state-
ments are introduced in the NDSeq specification and do not appear
in the parallel program.

NDSeq executions: NdSeqExecs(P) contains the (nondetermin-
istic) sequential executions of P where all statements are evaluated
by a single thread. Under the sequential semantics, the statements
other than cobegin and coforeach are interpreted in the standard
way. Statement atomic s is simply equivalent to s. Each evalua-
tion of cobegin s1; ...; sn is equivalent to running a nondetermin-
istic permutation of statements s1, ..., sn. A statement coforeach
is evaluated similarly to its deterministic version (foreach) except
that the elements of the collection being iterated over are processed
in a nondeterministic order. This, in essence, abstracts the seman-
tics of the collection to an unordered set. Finally, if(*) indicates a
nondeterministic branch. That is, each time a statement if(*){s}
is evaluated, a boolean value is chosen for * nondeterministically.

The parallelism correctness for P means that every final state
reachable by a parallel execution of the program from a given initial
state is also reachable by a NDSeq execution from the same initial
state. Therefore, parallel executions have no unintended nondeter-
minism caused by thread interleavings: either the nondeterminism
is prevented using synchronization, or it is expressed by the nonde-
terministic control flow in the sequential specification.

While defining correctness, we distinguish a set of global vari-
ables as focus variables, which are considered to be effective on
the functionality of the program. Then, we reason about the equiv-
alence executions by referring to the final valuation of the focus
variables. For example, consider a parallel search algorithm. The
variable pointing to the best (optimal) solution found is a focus
variable, while statistics counters, which do not affect the final out-
come of the search, are non-focus variables.

Definition 1 (Safe parallel execution). A parallel execution in
ParExecs(P) of a program P is safe with respect to a set Focus✓
Global , if there exists a sequential execution in NdSeqExecs(P),
such that the initial states are the same in both executions and their
final states agree on the value of all variables g 2 Focus .

Definition 2 (Parallelism Correctness). A program P obeys its
NDSeq specification with respect to a set Focus ✓ Global , if every
parallel execution of P is safe with respect to Focus .

3.2 Conflict Serializability Checking of Parallel Executions
A key motivation behind keeping the specification of a parallel
program similar to the parallel program is that we can readily
apply standard conflict serializability checking techniques to verify
the program against its NDSeq specification. We briefly describe
conflict serializability checking [12, 14, 27] because we will be
using such checking in our proposed inference algorithm.

We assume that the parallel program is free of low-level data
races [26]. We check conflict serializability on an execution trace
described as a sequence of execution events. For each event e we
have the following information:
Type(e) is the type of the event, defined as follows:

T ::= x = x

0 | branch(l)

The “x = x

0” event type corresponds to the assignment and binary
operation statements in our language (shown in Figure 5; recall that
metavariable x stands for both locals and globals). We use a simple
assignment in our formal description to simplify the presentation;
unary and binary operators do not pose notable difficulties. We
assume that an event can read a global, or write a global, but
not both. The “branch(l)” event marks the execution of a branch
operation when the boolean condition denoted by local l evaluated
to true. A branch event can be generated by the statements of
the form while(l) s and if(l) s. The case of a branch when the
negation of a local is true is similar. Our algorithm does not require
specific events to mark the start and end of procedures or atomic
blocks. We write e : T when e has type T .
Thread(e) denotes the thread that generates the event e . Recall that
a new thread is created for each dynamic instance of a block of a
cobegin statement and for each iteration of a coforeach statement.

First we define the conflict relation between individual events
with respect to a set of events, denoted E . For traditional conflict
serializability checking E is instantiated to the set of all events in a
trace. However, we will overload this parameter in the subsequent
sections.

Definition 3 (Conflicting events in a set of events E). Given a
set of events E , two events e, e

0 2 ⌧ are conflicting in E (written
e ;E e

0) iff (a) e, e

0 2 E , and (b) e occurs before e

0 in ⌧ , and (c)
both events operate on the same shared global variable, and at least
one of them represents a write, and (d) the events are generated by
different threads.

Next we lift the conflict relation from events to threads. When
comparing two threads for conflicts we need to consider their
events and all the events of their descendant threads. Thus, for a
thread t we define its transaction as the set of events Trans (t) that
includes all the events of t and of the descendant threads of t.

Definition 4 (Conflicting threads with respect to a set of events E).
Given a set of events E , two threads t, t

0 are conflicting in trace
⌧ (written t ;E t

0) iff (a) their transaction sets are disjoint (i.e.,
one is not a descendant of the other), and (b) there exist two events
e 2 Trans (t) and e

0 2 Trans (t0) that are conflicting (e ;E e

0).
The relation t ;⇤

E t

0 is the transitive and reflexive closure of the
thread conflict relation.

Given a parallel execution trace ⌧ and a subset of events E of
⌧ , the runtime conflict serializability checking algorithm works as
follows. We compute conflict relation ;E between threads from ⌧ .
If there exists a cycle t ;⇤

E t

0 ;⇤
E t (where t 6= t

0), then we report
that the trace is not conflict-serializable; otherwise, we declare that
the execution is safe. Intuitively, conflict serializability relies on
the fact that an interleaved trace can be transformed incrementally
into a serialized trace by a sequence of swaps of adjacent events.
From the definition of a conflict, it is always safe to swap two
adjacent non-conflicting events without changing the final state of
the execution, and a cycle of conflicts indicates that a serialized
trace cannot be obtained by swapping non-conflicting events.

The following theorem states that conflict serializability pro-
vides a sound way of checking parallel executions against a NDSeq
specification. (The proof of the theorem relies on classical results
from the database theory [27].)

Theorem 1. Let ⌧ be a parallel execution of P . If the above run-
time conflict serializability checking algorithm (where E contains
all events in ⌧) does not report any non-serializable transaction,
then ⌧ is safe with respect to its NDSeq specification.

3.3 Improving Conflict Serializability Checking
A standard conflict-serializability algorithm [27] considers all
events in a trace. (Note that, Theorem 1 holds when we instantiate
E to the set of all events of the trace.) However, in many concurrent
programs it is common that results of some computations access-
ing shared variables are discarded and are not relevant to the rest of
the execution. In Section 2 we demonstrated such a case, in which
partial work based on a previous read of shared variable x was dis-
carded when another conflicting access to x was later detected. In-
formally, an event is relevant if it writes to a memory location that
is eventually used in the computation of a final value of a focus
variable or a deterministic (while(l) or if(l)) branch taken in the
execution. We showed that if we perform traditional serializability
checking of a trace considering only the relevant events in the trace,
we can safely ignore conflict cycles [4]. Below we formally define
the set of relevant events; in Section 4 we show how to compute
this set by constraint solving.

Let S* be the set of statements that are immediately enclosed
with if(*) in the NDSeq specification of the program. Given a
trace ⌧ , we denote the set of relevant events in ⌧ with respect to
the NDSeq specification by Relevant(⌧,S*). In order to define
Relevant formally, we need some notation.

Dynamic Data Dependence: To track the relevance aspect we
compute a dynamic data-dependence relation between events. For
trace ⌧ , we define the data-dependence relation 99K⌧ as follows:
D1 (Data Dependence). For each local variable read ej : x = l

or branch ej : branch(l), we add a dependence (ei 99K⌧ ej) on
the last ei : l = x

0 that comes before ej in ⌧ . This dependence
represents an actual data flow through local l from ei to ej in the
current trace. Both of these events are in the same thread (since they
operate on the same local) and their order and dependence will be
the same in any serialization of the trace. These dependence edges
are shown as thin dashed arrows in Figure 3.
D2 (Inter-Thread Dependence). For each global variable read
ej : l = g we add dependencies (ei 99K⌧ ej) on events ei : g = l

0

as follows. From each thread we pick the last write to g that comes
before ej in ⌧ , and the first write to g that comes after ej in ⌧ . This
conservative dependence is necessary because the relative order of
reads and writes to a global variable from different threads may
change in a serialization of the trace. In this way, dependencies are
preserved while reordering the accesses.

Let 99K⇤⌧ denote the transitive closure of 99K⌧ . We omit the
subscripts when ⌧ is clear from context.

We write Es to denote the set that contains exactly the events
generated by a dynamic instance of s in some execution. Let
NdBlock(e) return the smallest set Es such that e 2 Es and
s 2 S*. In other words, NdBlock(e) gives the execution of the
smallest statement that generated e and is enclosed with if(*) in
the NDSeq specification of the program. If e is not generated by a
statement enclosed with if(*), then NdBlock(e) is undefined.

Definition 5 (Relevant events). Let ⌧ be a parallel execution trace.
Relevant(⌧,S*) is the smallest set of events from ⌧ such that
e 2 Relevant(⌧,S*), if one of the following holds:

R1 e : g = l, and e is the last write to g 2 Focus in Thread(e).
R2 e : branch(l), and NdBlock(e) is undefined.
R3 e : branch(l), NdBlock(e) = Es, and there is an event

e

0 2 Es such that e

0 2 Relevant(⌧,S*).
R4 Exists an event e

0 2 Relevant(⌧,S*) such that e 99K⇤⌧ e

0.
(Note that, in this case e is an assignment event.)

R1 makes all final writes to focus variables relevant. R2 and
R3 state the condition for a (deterministic) branch event e to be-
come relevant: either if e is not part of any execution of a statement
enclosed with if(*) in the NDSeq specification, or if the small-
est such execution generating e already contains another relevant
event. R4 makes an event relevant if it flows into another relevant
event. Notice that, a dynamic instance of a statement s 2 S* be-
comes totally irrelevant, if it does not contain a final write to a fo-
cus variable and none of the events generated by that instance flow
(through 99K) into other relevant events outside the instance.

The following theorem, proved in [4], states that it is sound to
check conflict serializability by only considering relevant events in
the trace. Here, we substitute E with Relevant(⌧,S*) in Defini-
tion 3 and 4 rather than all the events in the trace.

Theorem 2 (Soundness). Let ⌧ be the trace of a parallel execution
of a program P . If the runtime conflict serializability checking
algorithm only considering Relevant(⌧,S*) does not report any
non-serializable transaction, then the parallel execution is safe
with respect to the NDSeq specification of P and Focus .

4. Inferring a Suitable NDSeq Specification
Having explained the runtime approach to reasoning about whether
a program obeys its NDSeq specifications and the role of if(*)
annotations in this, the next question is where users should add
such if(*) annotations? In this paper, we are not going to describe
where to insert such annotations. A list of recipes for inserting such
annotations can be found our previous work [4]. In this work, we
are going to figure the annotations automatically. In particular, our
goal is, given a set of traces T of P , to come up with a set S*
of statements so that if we immediately enclose the statements
in S* with if(*) and compute the relevant events in T (as in
Definition 5), conflict serializability checking over these relevant
events gives no serializability violations, showing that all the traces
in T are safe with respect to the NDSeq specification obtained
from S*. We assume that the user still indicates which variables
constitute the focus variables.

In order to infer the NDSeq specification, we compute the
set of relevant events by solving a Boolean Satisfiability prob-
lem (SAT). In contrast to the original algorithm for computing
Relevant(⌧,S*) in [4], formulating our reasoning as a constraint
solving problem allows us to not only check that a given trace is
safe. It also enables us to perform such checking without giving an
NDSeq specification. Instead, we ask the SAT solver to find a suit-
able set S* of statements to enclose with if(*), so that the solver
can compute a proper set of relevant events using which it can show
that the traces in T are all safe.

We also need to be careful with the set S*, because if(*)s could
add extra behaviors to the NDSeq specification of the program and
those extra behaviors should not violate the functional correctness
of the program. Therefore, we need to find the minimal set S* that
is necessary to show that the traces in T are all safe. For this, we
then turn the problem into a Minimum-Cost Boolean Satisfiability
Problem (MinCostSAT).

4.1 SAT Formulation for Inferring NDSeq Specification
We start with a program P where a set Focus of focus variables
are marked by the programmer, but no statement is enclosed with
if(*), i.e., the set S* is empty. We are given a set T of parallel
execution traces and a set of conflict cycles detected by applying
a standard conflict serializability check on each trace. Theorem 1
and 2 imply that if a conflict serializability check, over all events
or only the events in Relevant(⌧,S*) where S* = ;, respectively,
finds no conflict cycles in a trace ⌧ , then ⌧ is safe. Thus, we assume
that each trace in T contains at least one conflict cycle. Our goal
is to determine if there exist an NDSeq specification with a non-
empty set S* of statements to enclose with if(*) using which we
can show that all the conflict cycles can be ignored safely, i.e., each
cycle contains at least one relevant event. For this, we construct and
solve a SAT instance on the following (boolean) indicator variables:

•
Xs, for each statement s in P .

•
Xe, for each event e in any of the traces in T . Note that these
dynamic events are uniquely identified, both in a trace and
across all traces.

•
XEs , for each dynamic execution of a statement s generating
exactly the events in Es in any of the traces in T .

Let X denote a solution to a SAT instance. We refer to the values
(from the set {0, 1}) of indicator variables Xe, Xs, and XEs in
solution X by Xe, Xs, and XEs , respectively.

We will construct our constraints to guarantee that, if our in-
stance has a solution X, then there exists an NDSeq specification
for P with respect to which all traces in T are safe, and the follow-
ing hold:

1. The set S* = {s | Xs = 1} contains the statements we need to
surround with if(*) in the inferred NDSeq specification.

2. For each event e in a trace ⌧ 2 T , if Xe = 1 then event e is
irrelevant in ⌧ , i.e., e 62 Relevant(⌧,S*) with respect to the
inferred NDSeq specification.

3. For each XEs , if XEs = 1, then Xs = 1, and thus, statement
s will be enclosed with an if(*), and that if(*) around s will
make events in E all irrelevant (i.e., Xe = 1 for all e 2 E).

4. For each conflict cycle C in some trace ⌧ 2 T , Xe = 1 for at
least one event e in C. This means, cycle C will not be observed
when checking conflict serializability over Relevant(⌧,S*)
computed using the set S* given by solution X.

We construct the full SAT instance as follows. The conditions
R1 through R4 are from Definition 5 of relevant events. For sim-
plicity, we use implications in constraints; each constraint can be
trivially translated to the clause form (disjunction of literals) by us-
ing the equivalence (X1 =) X2) ⌘ (¬X1 _X2).

(A) Condition R1 dictates that if an event e is a final write to a
variable in Focus , then e is relevant. Thus, for each such event
e, Xe must be 0 in the solution. We ensure this by substituting
0 for each such Xe in the rest of the formulation.

(B) Conditions R2 and R3 dictate that a branch event e –i.e., of
type branch(l) for some local l– becomes irrelevant only if (a)

e is generated by a dynamic instance of a statement s which is
directly enclosed by an if(*) and (b) all the events generated
by that instance are irrelevant. To ensure (a) and (b) we add the
following constraints.
• For each branch event e we add the constraint:

(Xe =)
_

e2Es

XEs) (1)

• For each dynamic instance of statement s, producing events
E, we add the constraint:

(XEs =) Xs) (2)

• For each dynamic instance of statement s, producing events
E, and for each e 2 E, we add the constraint:

(XEs =) Xe) (3)

Therefore, if a branch event e needs to be irrelevant, the solver
must find a dynamic instance of some s with all its events
(including e) are irrelevant, and s must be enclosed with if(*).

(C) Condition R4 dictates that if an event e

0 is relevant and if there
is another event e such that e 99K⇤⌧ e

0, then e must also be
relevant. In other words, if e needs to be irrelevant, e

0 must be
irrelevant, too. To ensure this, we add the following constraint
for each pair of events e, e

0 such that e 99K⇤⌧ e

0 for some ⌧ :

(Xe =) Xe0) (4)

(D) Given two statements s and s

0, we say that s overlaps with s

0 if
s is not nested inside s

0, s

0 is not nested inside s, and there is a
statement s

00 nested inside both s and s

0.
If we have two overlapping statements, then we cannot surround
both of them by if(*) because such an action would result in
an invalid program. For example, consider the sequential com-
position of three statements s1; s2; s3. Then statements s1; s2
and s2; s3 overlap with each other and it is easy to see that we
cannot surround both of them with if(*) simultaneously. Our
constraint system ensures this restriction by adding the follow-
ing constraint for every pair of overlapping statements s, s

0:

(Xs =) ¬Xs0) (5)

(E) Finally, we need to ensure that at least one event in each conflict
cycle must be irrelevant so that we can use Theorem 2 to
conclude that all the traces in T are safe with respect to the
inferred NDSeq specification. To ensure this, for each set C

of events forming a conflict cycle in a trace ⌧ 2 T , we add
constraint: _

e2C

Xe (6)

If the above constraint system is satisfiable, then a solution to
it gives us an NDSeq specification. In particular, if X is a solution
to the constraint system, then S* = {s | Xs = 1} is the set of
statements to enclose with if(*) in the NDSeq specification. Then,
all the traces in T are safe with respect to the inferred specification.

Theorem 3 (Inference). Given a set T of parallel execution traces
of program P and focus variables Focus , assume that our SAT
instance is satisfiable, and let S* be the set of statements, inferred
from the solution, to be enclosed with if(*). Then, every trace in T
is safe with respect to Focus and the inferred NDSeq specification.

We give the proof of Theorem 3 in Appendix A.
A noteworthy implication of this theorem is that, if there is

no way to show that a trace in T is safe by only adding if(*)s
to statements, the solver reports that the solution is unsatisfiable.

Thus, an unsatisfiable instance indicates that one of the traces in T
is likely to contain parallelism errors, such as atomicity violations.

4.2 MinCostSAT Solving for a Minimal NDSeq Specification
The SAT formulation above guarantees that if there is an NDSeq
specification, in which a set S* of statements are enclosed in if(*),
that can show that the traces in T are safe, then there exists a
solution X that selects S*, i.e., forall s 2 S*, Xs = 1. But,
we have not guaranteed that such a solution selects exactly S*. In
other words, the solution may tell us to enclose with if(*) more
statements than those in S*. In this case, there is a risk that some
statements can be unnecessarily surrounded by if(*). Since adding
if(*) may cause adding more behaviors to the program, one could
end up adding if(*)s that violate functional correctness. Therefore,
we need a mechanism to find a solution to the constraint system
so that functional correctness is not broken. We noticed that if we
add a minimal number of if(*)s then there is a lower chance of
breaking the functional correctness. For this, we re-formulate the
SAT problem above as a MinCostSAT problem.

MinCostSAT is a special form of SAT, where, in addition to the
constrains above, a cost function C assigns each variable a non-
negative cost. The solver is asked to find a solution that not only
satisfies all the constraints, but also minimizes the sum of the costs
of the variables that are assigned 1 in the solution.

Our MinCostSAT formulation contains all the constraints (A)-
(E) given above. In addition, we define the cost function C such
that for each Xs, C(Xs) = 1, and for other variables X•,
C(X•) = 0. Therefore, the solver optimizes the objective 1

minimize
X

s in P

Xs (7)

In this formulation, Xs is assigned 1 only when a branch event e

must be marked irrelevant to discharge a conflict cycle, and for this,
s must be surrounded with if(*). Otherwise, Xs is assigned 0 to
minimize the cost.

Note that, adding only the minimum number of necessary
if(*)s to the inferred NDSeq specification is a heuristic to reduce
the risk of violating the functional specification. In other words,
if we find a solution to our MinCostSAT formulation above, then
we have inferred a likely NDSeq specification of the parallel pro-
gram, and that specification may still violate the functional cor-
rectness specification of the program. If we find no solution, then
probably there is no NDSeq specification for the parallel program.
Thus, we foresee a repetitive process for finding the right NDSeq
specification, in which the user sequentially checks the functional
correctness specification (e.g., assertions) after inferring an NDSeq
specification, and if any functional correctness criterion is violated,
rules out the current placement of if(*)s for the next iteration of
NDSeq specification inference.

4.3 Optimizations
We conclude this section by presenting two optimizations that we
observed to have significant effect in simplifying the constraint
system, and thus reducing the MinCostSAT solving time from
minutes to several seconds.

Using Dynamic Slicing: Recall that in Constraint (A) we pre-
assign 0 to each Xe if e is a final write to a focus variable; the
values for indicator variables of other events are computed during
the SAT solving. By using the dynamic slice [1] of the trace, we

1 This formulation can also be mapped to a Partial Maximum Satisfiability
problem (PMAX-SAT), which contains our constraints in (A)-(E) as hard
constraints and for each variable Xs a soft constraint (¬Xs); the objective
is to satisfy all hard constraints and maximum number of soft constraints.

can improve this by providing values for more variables before the
SAT solving.

Let ,!⌧ denote the control dependence between the events in
trace ⌧ , and �!⇤

⌧ denote the transitive closure of (99K⌧ [,!⌧).
Recall that 99K⌧ denotes data dependence defined in Section 3.3,
and see Appendix B for the formal definition of ,!⌧ .

A dynamic slice of a trace ⌧ with respect to the focus variables,
denoted by DSlice(⌧), is the set of events from ⌧ such that e 2
DSlice(⌧) iff there exists an event e

0 : g = l in ⌧ , e

0 is the last
write to g 2 Focus in Thread(e0), and e �!⇤

⌧ e

0.

Lemma 1. 8S*. DSlice(⌧) ✓ Relevant(⌧,S*).

We give the proof of the lemma in Appendix B.
Lemma 1 indicates that given an input trace ⌧ 2 T to our

MinCostSAT formulation, the set of relevant events in ⌧ given by
a solution will always be a superset of the dynamic slice of ⌧ ; this
result holds for any inferred NDSeq specification. In other words,
if e 2 DSlice(⌧) then it must be relevant. Thus, we can safely
modify (A), which pre-assigns 0 to Xe only if e is a final write to a
focus variable, in Section 4.1 as follows.

(A’) For each event e 2 DSlice(⌧), Xe must be 0 in the solution.
Thus, we substitute 0 for each such e in the constraint system.

Grouping Events: The formulation of MinCostSAT in Section 4
considers all the events in the execution and the dependencies be-
tween those events. This could lead to large MinCostSAT instances
that are expensive to solve. We address this situation by grouping
events into disjoint sets. Whenever we see an execution of a state-
ment that is completely excluded from the dynamic slice, we treat
all the events e = {e1, ..., en} in that dynamic execution instance
of the statement as a single (compound) event. For each i 2 [1, n],
we then replace the variable Xei in all constraints of the MinCost-
SAT by the variable Xe and we lift the constraints described in
Section 4 to sets of events. In this way, we can ignore the depen-
dency relationship between the events within a group and concen-
trate on inter-group dependencies. Although grouping events in this
way may result in less optimal solutions (with higher cost than the
original and more general formulation in Section 4), in our experi-
ments, we confirmed that it does not affect the final solution for our
benchmarks.

5. Experimental Evaluation
In this section, we describe our efforts to experimentally evaluate
our approach to inferring likely nondeterministic sequential (ND-
Seq) specifications for parallel programs. In particular, we aim to
evaluate the following claim: By examining a small number of rep-
resentative executions, our specification inference algorithm can
automatically generate the correct set of if(*) annotations for real
Java programs.

To evaluate this claim, we implemented our technique in a pro-
totype tool for Java, called NDETERMIN, and applied NDETERMIN
tool to the set of Java benchmarks for which we have previously
and manually written NDSeq specifications [4]. We compared the
quality and accuracy of our automatically-inferred if(*)s to the
ones in their manually-written NDSeq specifications.

Our prototype tool NDETERMIN uses bytecode instrumentation
via Soot [32]. During the instrumentation phase, we compute the
control dependencies between statements and identify the candi-
date static blocks that could be annotated with if(*). While Sec-
tion 4 describes our algorithm over structured statements, our im-
plementation handles unstructured statements of Java. We use ac-
tive random testing to generate parallel execution traces, and use
the MinCostChaff [17] and MiniSat+[9] solvers to solve the Min-
CostSAT instances generated from these traces.

Benchmark Benchmark Description
Approximate
Lines of Code
(App + Lib)

of Parallel
Constructs

Size of Manual
NDSeq Spec

Size of Trace
(Events)

Inferred NDSeq
Specification

of
if(*)’s

focus
stmts

All Sliced
Out

of
if(*)’s

Correct?

JGF

sor successive over-relaxation 300 1 0 1 905k 561k 0 yes
matmult sparse matrix-vector multiplication 700 1 0 1 962k 8k 0 yes
series coefficients of Fourier series 800 1 0 5 2008k 1215 0 yes
crypt encryption and decryption 1100 2 0 3 493k 100k 0 yes
moldyn molecular dynamics simulation 1300 4 0 1 4517k 4300k 0 yes
lufact LU factorization 1500 1 0 1 1048k 792k 0 yes
raytracer ray tracing 1900 1 0 1 9125k 8960k - -
raytracer (fixed) corrected ray tracing 1900 1 0 1 9125k 8960k 0 yes
montecarlo Monte Carlo derivative pricing 3600 1 0 1 1723k 731k 0 yes

PJ

pi3 Monte Carlo approximation of ⇡ 150 + 15,000 1 0 1 1062k 141 0 yes
keysearch3 cryptographic key cracking 200 + 15,000 2 0 4 1062k 1049k 0 yes
mandelbrot fractal (Mandelbrot set) rendering 250 + 15,000 1 0 6 576k 330k 0 yes
phylogeny branch-and-bound search 4400 + 15,000 2 3 8 29k 24k - -
phylogeny (fixed) corrected branch-and-bound search 4400 + 15,000 2 3 8 29k 24k 1 yes
stack Treiber non-blocking stack [30] 40 1 2 8 1050 356 2 yes
queue non-blocking queue [25] 60 1 2 8 325 114 2 yes
meshrefine Delaunay mesh refinement 1000 1 2 50 930k 845k 2 yes

Table 1. Experimental results. All if(*) annotations inferred by our tool were verified manually to be correct.

Limitations: In Java, it is necessary to handle language features
such as objects, exceptions, casts, etc. While our implementation
supports many intricacies of the Java language, it has a couple
of limitations. First, our implementation tracks neither the shared
reads and writes made by uninstrumented native code, nor the flow
of data dependence through such native code. Second, in order to
reduce the runtime overhead, our tool does not instrument all of the
Java standard libraries. Thus, we could miss conflicts or data depen-
dencies carried out through the native code and the Java libraries,
and fail to include some events in our inference algorithm. To ad-
dress the second limitation, for certain shared data structure objects
we introduced shared variables and inserted reads or writes of those
variables whenever their corresponding objects were accessed. This
allowed us to conservatively approximate the conflicts and data de-
pendencies for certain critical standard Java data structures. We did
not observe any inaccuracy in our experimental results due to these
limitations.

5.1 Experimental Setup
The names, sizes, and brief descriptions of the benchmarks we used
to evaluate NDETERMIN are listed in Table 1. Several benchmarks
are from the Java Grande Forum (JGF) benchmark suite [29] and
the Parallel Java (PJ) Library [20]. For our benchmarks, we use the
same focus variable and parallel region annotations as in [4]. (Al-
though these benchmarks are written in a structured parallel style,
they use explicit Java threads as Java does not provide cobegin
or coforeach constructs. Thus, the code was annotated to indi-
cate which regions of code correspond to the bodies of structured
cobegin’s or coforeach’s.)

Note that benchmarks raytracer and phylogeny both con-
tain parallelism errors. Thus, we apply NDETERMIN to both the
original version of each benchmark, and a version in which the er-
ror has been fixed. (For raytracer, we modify a synchronized
block to use the correct shared lock to protect the key global
variable checksum1. For phylogeny, we make one method
synchronized in order to eliminate an atomicity error.)

We execute each benchmark five times on a single test input,
using a simple implementation of race-directed active random test-
ing [28]. For each benchmark, NDETERMIN analyzes all five exe-
cutions and either infers a placement of if(*) for the benchmark’s
NDSeq specification or reports that the benchmark satisfies no pos-
sible NDSeq specification due to a parallel error.

We performed our experiments on a 64-bit Linux machine with
a dual Quad-Core/HT Intel(R) Xeon(R) CPU (2.67GHz) processor,

24MB L3 cache and 48GB of DDR3/1066 RAM. For each experi-
ment, we measured the time for solving both SAT instances (with-
out minimizing the number of if(*)s) using ZChaff and MiniSat,
and MinCostSAT instances using MinCostChaff and MiniSat+ gen-
erated during the experiment. We observed that for the benchmarks
that do not require nondeterministic branches in their NDSeq spec-
ifications, the solving time for SAT and MinCostSAT are very close
to each other, as the solver can satisfy all the constraints with-
out needing to optimize the number of if(*)s. For most of the
benchmarks, the solving time was in terms of milliseconds, and few
large benchmarks required several seconds to solve the constraints.
Therefore, in the following we report on the quality and accuracy
of the inferred specifications.

5.2 Experimental Results
The results of our experimental evaluation are summarized in Ta-
ble 1. The column labeled “All”, under “Size of Trace (Events)”, re-
ports the number of total events seen in the last execution (of five)
of each benchmark, and the column labeled “Sliced Out” reports
the number of events removed by our dynamic slicing. NDETER-
MIN searches for if(*) placements to eliminate cycles of transac-
tional conflicts involving sliced out events.

The second-to-last column of Table 1 reports the number of
if(*) constructs in the inferred NDSeq specification for each
benchmark. We manually determined whether each of the inferred
if(*) annotations was correct—i.e., captures all intended nonde-
terminism, so that the parallel program is equivalent to its NDSeq
specification, but no extraneous nondeterminism that would allow
the NDSeq version of the program to produce functionally incor-
rect results. All of the inferred specifications were correct.

For many of the benchmarks, NDETERMIN correctly infers that
no if(*) constructs are necessary. All but one of these benchmarks
are simply conflict-serializable. As discussed in [4], montecarlo
is not conflict-serializable, but the non-serializable conflicts afftect
neither the control-flow nor the final result of the program.

For benchmarks stack, queue, and meshrefine, NDETER-
MIN infers an NDSeq specification exactly equivalent to our man-
ual specifications from [4]. That is, NDETERMIN infers the same
number of if(*) constructs and places them in the same locations
as in previous manually-written NDSeq specifications. We note that
NDETERMIN finds specifications slightly smaller than the manual
ones, which include a small number of adjacent statements in the
if(*) that do not strictly need to be enclosed, although in each case

the overall behavior of the NDSeq specification is the same whether
or not these statements are included in the if(*).

Further, for benchmark phylogeny (fixed), while the previ-
ous manual NDSeq specification included three if(*) constructs,
NDETERMIN correctly infers that only one of these three is actually
necessary. The extra if(*) appear to have been manually added to
address some possible parallel conflicts that, in fact, can never be
involved in non-serializable conflict cycles. That is, these two ex-
traneous if(*) allow the NDSeq specification to perform several
nondeterministic behaviors seen during parallel execution of the
benchmark. But NDETERMIN correctly determines that these be-
haviors are possible in the NDSeq specification even without these
if(*).

Note that for two benchmarks, raytracer and phylogeny,
NDETERMIN correctly reports that no NDSeq specification (i.e.,
no solution to the SAT instance) exists (indicated by “-” in Ta-
ble 1). That is, NDETERMIN detects that the events of the dynamic
slice (i.e., those not removed by dynamic slicing) are not conflict-
serializable. These conflicts exist because both benchmarks contain
parallelism errors (atomicity errors due to insufficient synchroniza-
tion). As a result of these errors, these two parallel applications can
produce incorrect results that no sequential version could produce.

Discussion: These experimental results provide promising pre-
liminary evidence for our claim that NDETERMIN can automat-
ically check serializability by way of inferring if(*) necessary
for the NDSeq specification of parallel correctness for real paral-
lel Java programs. We believe adding nondeterministic if(*) con-
structs is the most difficult piece of writing a NDSeq specification,
and thus our inference technique can make using NDSeq specifica-
tions much easier. Further, such specification inference may allow
for fully-automated testing and verification to use NDSeq specifi-
cations to separately address parallel and functional correctness.

6. Related Work
Several parallel correctness criteria, including data-race free-
dom [26], atomicity [16], linearizability [19], and determinism [2,
5] have been studied for shared memory parallel programs that sep-
arate the reasoning about functionality and parallelism at different
granularities of execution. All these criteria provide the separation
between parallel and functional correctness partially, as the restric-
tion on thread interleavings is limited, for example, to atomic block
boundaries. NDSeq specifications [4] develop this idea up to a com-
plete separation between parallelism and functionality so that the
programmer can reason about the intended functionality by exam-
ining a sequential, but nondeterministic, program.

Reasoning about conflicting accesses that are simultaneously
enabled but ineffective on the rest of the execution is the main chal-
lenge in both static [7, 16, 31] and dynamic [3, 14, 21, 23, 33, 34]
techniques for checking atomicity and linearizability. The Purity
work [13] and QED [10] provide static analyses to rule out spuri-
ous warnings due to such conflicts by abstracting these operations
to no-op’s. Their abstraction techniques resemble identifying irrel-
evant events by a dependency analysis. However, lack of dynamic
information during the static verification is a bottleneck in automat-
ing their overall approach

DETERMIN [6] infers likely semantic determinism specifica-
tions [5] for parallel programs. This is done by monitoring and an-
alyzing program states during parallel executions of the program
and generating pre- and post- bridge predicates [5], conjunctions of
equality predicates over program variables from pairs of program
executions.

There is a rich literature on generating specifications/invariants
for sequential programs. Daikon [11] automatically infers likely
program invariants using statistical inference from a program’s ex-

ecution traces. Csallner et al. [8] propose an approach, called DySy,
that combines symbolic execution with dynamic testing to infer
preconditions and postconditions for program methods. Hangal and
Lam [18] propose DIDUCE, which uses online analysis to discover
simple invariants over the values of program variables. Deryaft [24]
is a tool that specializes in generating constraints of complex data
structures. Logozzo [22] proposed a static approach that derives
invariants for a class as a solution of a set of equations derived
from the program source. Houdini [15] is an annotation assistant
for ESC/Java. It generates a large number of candidate invariants
and repeatedly invokes the ESC/Java checker to remove unprov-
able annotations, until no more annotations are refuted.

Acknowledgments
This research supported in part by Microsoft (Award #024263) and
Intel (Award #024894) funding and by matching funding by U.C.
Discovery (Award #DIG07-10227), by NSF Grants CNS-0720906,
CCF-101781, CCF-0747390, CCF-1018729, and CCF-1018730,
and by a DoD NDSEG Graduate Fellowship. The last author is
supported in part by a Sloan Foundation Fellowship. Additional
support comes from Oracle (formerly Sun Microsystems), from a
gift from Intel, and from Par Lab affiliates National Instruments,
NEC, Nokia, NVIDIA, and Samsung.

References
[1] H. Agrawal and J. R. Horgan. Dynamic program slicing. In Program-

ming Language Design and Implementation (PLDI), 1990.
[2] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann,

R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian.
A type and effect system for Deterministic Parallel Java. In Object-
Oriented Programming, Systems, Languages, and Applications OOP-
SLA, pages 97–116, 2009.

[3] S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan. Line-up: A com-
plete and automatic linearizability checker. In Programming Lan-
guage Design and Implementation (PLDI), 2010.

[4] J. Burnim, T. Elmas, G. Necula, and K. Sen. NDSeq: Runtime check-
ing for nondeterministic sequential specifications of parallel correct-
ness. In Programming Language Design and Implementation (PLDI),
2011.

[5] J. Burnim and K. Sen. Asserting and checking determinism for
multithreaded programs. In Foundations of Software Engineering
(FSE), 2009.

[6] J. Burnim and K. Sen. DETERMIN: inferring likely deterministic
specifications of multithreaded programs. In 32nd ACM/IEEE Inter-
national Conference on Software Engineering (ICSE), 2010.

[7] R. Colvin, L. Groves, V. Luchangco, and M. Moir. Formal verification
of a lazy concurrent list-based set algorithm. In Computer Aided
Verification (CAV), 2006.

[8] C. Csallner, N. Tillmann, and Y. Smaragdakis. DySy: Dynamic sym-
bolic execution for invariant inference. In 30th ACM/IEEE Interna-
tional Conference on Software Engineering (ICSE), 2008.

[9] N. Eén and N. Sörensson. Translating pseudo-boolean constraints into
SAT. JSAT, 2(1-4):1–26, 2006.

[10] T. Elmas, S. Qadeer, and S. Tasiran. A calculus of atomic actions. In
Principles of Programming Languages (POPL), pages 2–15, 2009.

[11] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly
detecting relevant program invariants. In Proceedings of the 22nd
International Conference on Software Engineering, pages 449–458,
June 2000.

[12] A. Farzan and P. Madhusudan. Monitoring atomicity in concurrent
programs. In Computer Aided Verification (CAV), pages 52–65, 2008.

[13] C. Flanagan, S. N. Freund, and S. Qadeer. Exploiting purity for atom-
icity. In International Symposium on Software Testing and Analysis
(ISSTA), 2004.

[14] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A sound and
complete dynamic atomicity checker for multithreaded programs. In
Programming language design and implementation (PLDI), 2008.

[15] C. Flanagan and R. M. Leino. Houdini, an annotation assistant for
ESC/Java. In Proceedings of the International Symposium of Formal
Methods Europe (FME), 2001.

[16] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In
Programming Language Design and Implementation (PLDI), 2003.

[17] Z. Fu and S. Malik. Solving the minimum-cost satisfiability problem
using SAT based branch-and-bound search. In IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), 2006.

[18] S. Hangal and M. S. Lam. Tracking down software bugs using
automatic anomaly detection. In Proceedings of the International
Conference on Software Engineering, 2002.

[19] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Trans. Prog. Lang. Syst., 12:463–492,
July 1990.

[20] A. Kaminsky. Parallel Java: A Unified API for Shared Memory
and Cluster Parallel Programming in 100% Java. In Parallel and
Distributed Processing Symposium (IPDPS), March 2007.

[21] Z. Lai, S. C. Cheung, and W. K. Chan. Detecting atomic-set serial-
izability violations in multithreaded programs through active random-
ized testing. In International Conference on Software Engineering,
pages 235–244, 2010.

[22] F. Logozzo. Automatic inference of class invariants. In Proceedings
of the 5th International Conference on Verification, Model Checking
and Abstract Interpretation (VMCAI ’04), January 2004.

[23] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting atomicity vio-
lations via access interleaving invariants. In Proceedings of the 12th
international conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XII), 2006.

[24] M. Z. Malik, A. Pervaiz, , and S. Khurshid. Generating representation
invariants of structurally complex data. In TACAS, pages 34–49, 2007.

[25] M. M. Michael and M. L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In Principles of
Distributed Computing (PDOC), 1996.

[26] R. H. B. Netzer and B. P. Miller. What are race conditions?: Some
issues and formalizations. ACM Lett. Prog. Lang. Syst., 1(1):74–88,
1992.

[27] C. Papadimitriou. The theory of database concurrency control. Com-
puter Science Press, 1986.

[28] K. Sen. Race directed random testing of concurrent programs. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’08), 2008.

[29] L. A. Smith, J. M. Bull, and J. Obdrzálek. A parallel Java Grande
benchmark suite. In Supercomputing (SC), 2001.

[30] R. K. Treiber. Systems programming: Coping with parallelism. Tech-
nical Report RJ 5118, IBM Almaden Research Center, Apr. 1986.

[31] V. Vafeiadis. Shape-value abstraction for verifying linearizability. In
Verification, Model Checking, and Abstract Interpretation, 2009.

[32] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and
P. Co. Soot - a Java optimization framework. In CASCON, 1999.

[33] L. Wang and S. D. Stoller. Runtime analysis of atomicity for multi-
threaded programs. IEEE Trans. Softw. Eng., 32:93–110, 2006.

[34] J. M. Wing and C. Gong. Testing and verifying concurrent objects. J.
Parallel Distrib. Comput., 17(1-2):164–182, 1993.

A. Correctness of Inference Algorithm
Let T be a set of parallel execution traces of program P , and Focus

be a set of focus variables. Let X be a satisfying solution to the SAT
formulation in Section 4.1, and S* contain the set of statements
to enclose with if(*) in the inferred NDSeq specification, i.e.,
s 2 S* i↵ Xs = 1.

Note that, we have already proved (in [4]) Theorem 2, which
says that checking conflict serializability of each trace ⌧ in T by
only considering Relevant(⌧,S*) is sound: if we find no conflict
cycles after omitting irrelevant events, then ⌧ is safe with respect to
the inferred NDSeq specification. Therefore, in the following it is
enough to show that the solution to the SAT formulation gives us a
superset of Relevant(⌧,S*), that is, if e 2 Relevant(⌧,S*), then
the solution indicates that e is relevant.

Lemma 2. Let T be a set of parallel execution traces of program
P . Let S* be a set of if(*) inferred by the above algorithm, given
T and focus variables Focus . Let S* correspond to solution X of
the constraint system built by the inference algorithm.

For each event e in ⌧ 2 T , if e 2 Relevant(⌧,S*), then
Xe = 0.

Proof. Recall the conditions R1-R4 in Definition 5 for an event
e 2 ⌧ to be in the set Relevant(⌧,S*). Given these condi-
tions, think of an iterative procedure to compute the relevant
events: Relevant(⌧,S*) is initialized to an empty set, and at each
step, one of the rules R1-R4 is applied to add a new event to
Relevant(⌧,S*), until Relevant(⌧,S*) does not change. We do
the proof by induction on the length of this iteration. The base case
where Relevant(⌧,S*) = ; is trivial. In the following, we do a
case split on the condition that causes event e to be added to set
Relevant(⌧,S*).

R1 In this case, e is the last write to a focus variable by one of the
threads. Therefore, by Constraint (A), Xe is always substituted
by 0.

R2 In this case, e is a branch(l) event and NdBlock(e) is un-
defined, i.e., e is not generated by a statement enclosed with
if(*). Consider each XEs term in Constraint (B.1) for e:

(Xe =)
_

e2Es

XEs)

For each dynamic execution Es such that e 2 Es, s is not
enclosed with if(*); otherwise NdBlock(e) would be defined.
Thus, it must be the case that s 62 S* and Xs = 0. Therefore,
by Constraint (B.3), each such XEs is 0. Finally, by Constraint
(B.1), we have Xe = 0.

R3 In this case, e is a branch(l) event, NdBlock(e) = Es, and
there is an event e

0 2 Es such that e

0 2 Relevant(⌧,S*). By
inductive hypothesis, Xe0 = 0. To reach a contradiction, as-
sume that Xe = 1, and consider each XE0

s0
term in Constraint

(B.1) for e:

(Xe =)
_

e2E0
s0

Xs0,E0)

To satisfy this constraint, there must be at least one dynamic
execution E

0
s0 such that XE0

s0
= 1. Moreover, by Constraint

(B.3), for every e

00 2 E

0
s0 , Xe00 = 1 must hold. Thus, E

0
s0

cannot contain e

0 for which Xe0 = 0.
Since XE0

s0
= 1, Constraint (B.2) ensures that Xs0 = 1, so s

0

is enclosed with if(*). Note that, by definition of NdBlock(e),
s is also enclosed with if(*). By Constraint (D.5), statements
s and s

0 cannot overlap; either Es and E

0
s0 are disjoint or one

contains the other. And Es and E

0
s0 are not disjoint, because

e is in both. Again by definition of NdBlock(e), Es is the
smallest nondeterministic branch containing e, so it is the case
that Es ✓ E

0
s0 . Since e

0 2 E, e

0 2 E

0 must hold. This
contradicts with our assumptions that E

0 cannot contain e

0.
R4 In this case, e 99K⇤ e

0 for some e

0 already in Relevant. There-
fore, by inductive hypothesis, Xe0 = 0. Constraint (C.1) en-
sures that Xe = 0.

Theorem 3 (Inference). Given a set T of parallel execution traces
of program P and focus variables Focus , assume that our SAT
instance is satisfiable, and let S* be the set of statements, inferred
from the solution, to be enclosed with if(*). Then, every trace in T
is safe with respect to Focus and the inferred NDSeq specification.

Proof. Suppose some ⌧ 2 T is not safe with respect to the inferred
NDSeq specification. That is, there exist events C = e1, . . . , ek

that are all relevant and that form a cycle of conflicts between
the threads of ⌧ . Note that the e1, . . . , ek are all events of type
“x = x

0”. (A branch(l) event can not appear in a cycle as l is a
local variable.)

The inferred if(*) locations S* correspond to a solution X
to the constraint system built by our inference algorithm. By
Lemma 2, because the e1, . . . , ek are all relevant, we have:

Xe1 = Xe2 = · · · = Xek = 0

But this contradicts Constraint (E)—that, because e1, . . . , ek form
a conflict cycle, the solution X must satisfy the following con-
straint:

(Xe1 _Xe2 _ · · · _Xek)

Therefore, for each conflict cycle, at least one event in the cycle
must be marked irrelevant in the solution X. Theorem 2 states that
in this case all the traces are safe because there exists no conflict
cycles with all relevant events.

B. Using Dynamic Slicing
To introduce the dynamic slicing, we need to define the control
dependence relation ,!⌧ between events of a trace ⌧ .

C1 (Control Dependence). For a branch eventei : branch(l) and
any event ej , we add ei ,!⌧ ej , if ej is control dependent on
ei. Note that ei is control dependent on ej if and only if
1. ei is the branch(l) event generated from the execution of a
if(l) s or while(l) s,

2. ej is generated by the execution of a statement s

0 contained
in the nested s statement, and

3. no other conditional or loop in s contains the statement s

0.

Let �!⇤
⌧ denote the transitive closure of (99K⌧ [,!⌧).

Dynamic Slice A dynamic slice of a trace with respect to the
focus variables is computed as follows. We first compute the
set Target(⌧) = {e : g = l 2 ⌧ | g 2 Focus ^
e is last write to g in Thread (e)}, i.e. the set of all events that di-
rectly affect the final output. Then a dynamic slice of a trace
⌧ , denoted by DSlice(⌧), is the set {e 2 ⌧ | 9e0 2
Target(⌧) such that e �!⇤

⌧ e

0}, i.e. the set of all events that di-
rectly or indirectly affect the final output.

The following observation enables us to perform the optimiza-
tion given in Section 4.3 to improve the efficiency of solving our
MinCostSAT instances.

Lemma 1. Given an input trace ⌧ 2 T to our SAT formulation,
a dynamic slice of ⌧ is always a subset of the set of relevant
events given by a solution (independent of the inferred NDSeq
specification). That is, 8S*. DSlice(⌧) ✓ Relevant(⌧,S*).

Proof. Note that both DSlice(⌧) and our SAT instance in Sec-
tion 4.1 use the same set Focus of focus variables given by the
user. Let X be a solution to our SAT formulation. We show that if
e 2 DSlice(⌧), then e cannot be marked irrelevant, i.e., Xe = 0.

e 2 DSlice(⌧) holds if either e is the last write to some
g 2 Focus or e �!⇤

e

0 for some e

0 2 DSlice(⌧). In the former
case (e 2 DSlice(⌧)), Part (A) of the SAT formulation ensures that
Xe = 0. For the latter case (e �!⇤

e

0 and e

0 2 DSlice(⌧)) we
do a proof by induction on the length of �!. For the induction,
we assume that e

0 is marked relevant, so Xe0 = 0. In the base
case e = e

0, and thus, Xe = 0. In the inductive case, we rely
on the contrapositive form of Lemma 3 (proved below): if e

0 is
marked relevant, either e is marked relevant or e �!⇤

e

0 does not
hold.

Lemma 3. Given an input trace ⌧ 2 T to our SAT formulation
and a NDSeq specification, if there exists two events e and e

0 in ⌧

such that e is irrelevant and e �!⇤
e

0, then e

0 must be irrelevant.

Proof. We prove the contrapositive form of the statement. Assume
that e

0 is marked relevant, i.e., Xe0 = 0, and e �!⇤
e

0. We prove
that e is marked relevant, i.e., Xe = 0, in the solution.

We do induction on the length of �!⇤. The base case when
e = e

0 is trivial. Now assume that e �! e

00 �!⇤
e

0 for some e

00.
By inductive hypothesis e

00 is also marked relevant, so Xe00 = 0.
By definition of �!, either e 99K e

00 or e ,! e

00. In the former
case, Constraint (4) ensures that Xe = 0 (thus the relations in
DSlice(⌧) due to D1 and D2 are respected by the solution).

Now assume the latter case: e ,! e

00. In this case e = branch(l)
for some l. To reach a contradiction, let us assume Xe = 1. In
this case, Constraint (1) ensure that there is some XEs = 1 for
some statement s enclosed with if(*), thus Xs = 1 also holds. In
addition, by Constraint (3), Xe000 = 1 must hold for all e

000 2 E.
By definition of ,! and that if(*)s are structured, e

00 must be
in E, and thus Xe00 = 1, contradicting with our assumption that
Xe00 = 0. Therefore, for each solution X to SAT, if Xe0 = 0 and
e �!⇤

e

0, then Xe = 0 holds.

C. Incorporating Functional Correctness
Note that, although the formulation above aims to add only the min-
imum number of necessary if(*)s to the inferred NDSeq specifica-
tion, the risk of violating the functional specification remains. We
noticed that if a minimal solution, say S*, i.e., a solution of the
constraint system that optimizes objective (7), violates functional
correctness, then we can add the following constraint to the con-
straint system to avoid the solution:

_

s2S*

¬Xs (8)

and solve the resultant constraint system again while optimizing
the objective (7). Notice that, Constraint (8) plays the same role as
a “conflict clause” in the SAT terminology and prevents the solver
to assign 1 to all variables Xs for s 2 S* within the same solution.
We can repeat this process until we find a solution that satisfies both
functional correctness and passes serializability check or we find no
solution or we run out of time. If we find a solution in this iterative
process, then we have inferred a likely NDSeq specification of the
parallel program. If we find no solution, then probably there is no
NDSeq specification for the parallel program.

